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1. INTRODUCTION

We shall use the symbol K to denote a continued fraction (terminating or
non-terminating),

b I a2
lib -L

2 i

(1.1)N ~ co,Fn "* 0 for n < N + 1,

The general T-fraction

K Fr>z
r>~1 I + Gnz '

[5, p. 173], [2], [4], is said to correspond to the pair (L(z), L *(z») of formal
Laurent series

(1

if and only if for any natural number n the nth approximant of (1.1) has a
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Maclaurin expansion that agrees with L(z) up to and including the term cnzn,
and a Laurent expansion at 00 that agrees with L *(z) down to and including
the term C!"+l=-n+l. (For finite N all nth approximants for n ;:?: N are equal
to the Nth approximant.)

In the paper [2] there is a set of necessary and sufficient conditions on the
coefficients of L(z) and L *(z) for existence of a corresponding non-terminating
(i.e., N = (0) general T-fraction with all Gn ' =1= O. It is rather easy to prove
,that Gn =1= 0 for n < N + 1 is necessary (and suffici~nt) for a general
T-fraction (1.1) to correspond to some pair (1.2) of formal Laurent series,
and hence the condition Gn =1= 0 does not represent any restriction.

In the paper [7] it is proved that if L(z) and L*(z) actually represent
fimctions in sufficiently large neighborhoods of 0 and 00 and satisfy certain
boundedness conditions, then a corresponding general T-fraction exists and
converges to L(z) and L*(z) locally uniformly in certain neighborhoods of 0
and 00. A crucial point in the argument Is that the boundedness conditions
imply that F7, and - Gk both tend to a limit F =1= 0 as k -+ 00 in the following
way: For a certain C > 0 and eE (0, 1) we have fof' all k

(1.3)

This result shows that it is natural to study gener~l T-fractions (1.1) with
the property (1.3) and ask for properties of L(z) and L *(z).

The purpose of the present paper is to carry out such an investigation.
Correspondence will be the main issue, but convergence will also be touched
upon.

2. NOTATIONS. DEFINITION. STATEMENT OF THE MAIN RESULT

Some formulas will take a more convenient form if we in L(z) replace Cn by
(-1)n+1 Yn and in L *(z) replace c; by (-1)"+1 Y; , in which case L(z) and
L *(z) are written

00

L(z) = L (-1)n+1 ynz"
n~l

(2.1)
n~O

L*(z) = L (_l)n+1 y:zn.

If the general T-fraction (Ll) (with N;:?: 2) corresponds to the pair
(L(z), L*(z)) of formal Laurent series (2.1), then the T-fraction
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corresponds to a pair (.L(z), £*(z)) ,offormal Laurent series

00

£(z) = I (-l)n+lynzn
n~l

nC"o

£*(z) = t (-l)n+l y:zn [8].
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(2.2)

in case of correspondence theYn's and y;t"s can be expressed in terms of the
F1i;'s and the GIe's. The formulas for the Yn's and the y;t's are obtained from
the first ones by increasing the subscripts of all Fie's and Gle's by one.

Since we are going to study the general T-fractions where a condition (1.3)
holds, we need a notation for the family of such continued fractions. Without
loss of generality weinayassume that F = 1 (else replace Fz by z'). It will
furthermore turn out to be convenient to write IjR, R > 1, instead of e.

DEFINITION. For fixed R > 1 and C E (0, R) let :FR •G denote the family
of all general T-fractions

with the property that for all n

'and

Remark. The condition C < R implies that all Fn and Gn are #0. Hence
all general T-fractions in :TR :C are non-terminating and correspond to some
pair (2.1) of formal Laurent series [8].

The following theorem is the main result of the paper. The other results
are simple consequences of! this theorem.

THEOREM 1. Given R > 1 and E E (0, 1 - 1/R). Then there is a C > 0
such that any general T-fraction in ~,G corresponds at the origin to the
Maclaurin expansion of a function, holomorphic in ! z I < R - E, and at 00

to the Laurent expansion of a function, holomorphic in i z i > I /R + E

(also at CXJ).
The statement is sharp in the following sense: To any C E (0, R) there is a

general T-fraction in ~,cwhose corresponding series at the origin has a radius
of convergence at most =R; and whose corresponding series at co diverges
for all z with z I < I/R.

In Section 3 of the paper the statement about correspondence at 0 will
proved, and in Sectiqn 4 th:e statement about correspondence at CXJ. The
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proofs of Lemmas 1 and 4 are based upon ideas from [3]. Section 5 will
contain an extension of Theorem 1. Section 6 is a brief discussion of conver
gence problems.

3. CORRESPONDENCE AT °
Since all general T-fractions in ~.c are non-terminating and with all

Gn =1= 0, we may without loss of generality write

(3.1)

and we know from [8] that they all have a corresponding pair (2.1) offormal
Laurent series. We know furthermore, that

(3.2)

has a corresponding pair (2.2) of formal Laurent series.
The first lemma does not require the general T-fraction to be in ~.c,

but it requires correspondence, which e.g. is there if the general T-fraction is
in~.c.

LEMMA 1. If the general T-fraction (3.1) corresponds to the pair (2.1) of
formal Laurent series, then the following set offormulas hold:

n

Yn+1 = G1Yn + L YnH-lcYlc
'c~1

n-1

= (G1 + F2) Yn + L Yn+1-lcY'c,
k~1

n :;:, 1. "(3.3)

Proof From the formal identity

~ (-I)Ie+1 Ie _ F1z
1..- YleZ - 1 + G z +""co (_I)'c+1 Y- zle
1e~1 1 L..1e~1 Ie

it follows:

Comparing coefficients, we first get
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n-l

( l)n+l '\ - - 0- i...J Yn+1-kYk - ,
k~l

n:;?;l.

A slight rearrangement gives the second formula, and hence the lemma is
proved.

Since we mainly shall be interested in general T-fractions in 5"R,C , where
the Fk's are close to 1 and the Gk's are close to -1, it will be of advantage
to put

(3.4)

The formulas for the first Yk'S are then:

Yl = 1 +It
Y2 = (/2 + gl)(l It)
Y3 = (/2 + gl) Y2 + hYl

= (/2 + gl)2(l +It) + (/3 + g2)(l + f2)(1 +It)·

Also in the next lemma we do not require the general T-fraction to be in
5"R,C' but of course we maintain the correspondence requirement.

LEMMA 2. lffor all n :;?; 1 fn > °and gn > 0, then

for all n :;?; 2.

Proof We first observe that under the conditions of the lemma all Yn's
must be positive. For n = 1,2,3, this is readily seen from the formulas,
and it follows generally by a simple induction argument. (Of course all Yn's
must also be positive.)

From the formulas above we see directly that the inequality holds for
n = 2 and n = 3. Let N :;?; 3 be a number such that the inequality holds for
n = 2,3,..., N (and of course)in :;?; (1 +J;) ... (1 + fn)(/n+1 + gn) holds for
the same n-values). Then we have, since according to the remark on the
positivity of the Yn's the omitted terms in the last formula (3.3) all must be
positive:

Hence Lemma 2 is proved by induction.

PROPOSITION 1. For any C E (0, R) there is in ~,c a general T-fraction
whose corresponding series at °has a radius ofconvergence atmost equal to
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Proof Take the general T-fraction with

for all k, (3.5)

and let
00

L (_1)n+1 qnzn
n=1

(3.6)

be the corresponding power series at the origin. Then all qn are positive,
and from Lemma 2 it follows that for all n ~ 2

This proves that the radius of convergence of (3.6) cannot exceed R, and
hence the Proposition 1 is proved.

Proposition 1 takes care of the "sharpness statement" in Theorem 1
as far as correspondence at 0 is concerned.

In order to prove the "holomorphity statement" we need upper bounds
for the Yn's.

In the next lemma we only require correspondence. But for our purpose
the lemma will be most useful for fk > 0, gk > 0, in particular in the case
fk = gJc = CfRIe.

LEMMA 3. For any n ~ 2, Yn is a sum ofproducts offactors of the types
(1 + fm) and (ft'+1 + gJc), and every term contains at least one factor of the
type fN1 + gk .

Proof From the expressions for Y2 and Ys we see immediately that the
statement of the lemma holds for n = 2 and n = 3. It is also obvious that
if it holds for some Yn , then it also holds for Yn .

Let N ?: 3 be a number such that the statement of the lemma holds for
n = 2,3, ... , N. Then it obviously holds for the expression

N-1

(g1 + j;) YN + L YN+1-leYIe,
,,=1

and hence for YN+l (see (3.3)). The lemma is thus proved by induction.
Three important properties follow from Lemma 3:

(I) If ft, > 0 and gle > 0 for all k then all Yn are positive. (This,
however, is something we already know from the proof of Lemma 2.)

(2) If fie> 0 and gle > 0 for all k, then for all n, Yn is a strictly in
creasing function of allft/s and gk'S in the formula for Yn . On the other hand,
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for fixed absolute value of alIA and gk the I Yn I's are maximal whenh, ?:: 0
and gl' ?:: 0 for all k. From this follows in particular that in :FR,G we generally
have for all n

i Yn I = qn'

where the qn's are defined in (3.6).

(3) For all n ?:: 2 we have

(3.7)

From the properties land 3 it follows by using Lemma 1 that

(3.8)

for all n ?:: 1.
Let <tn)':~l be a sequence of positive numbers, defined by

(3.9)

n?::1.

Then, from property 2 and (3.8) it follows that for all continued fractions in
~,Gwe have

for all n.
We shall now study the formal power series

C/O

T(z) = I tnzn.
"~l

The recursion formula can be rewritten in the following form:

(3.10)

(3.11)

n?::1.

From this it follows that T(z) satisfies the following formal identity:
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We rearrange the identity:
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T(z)2 - [R + (1 - C) tlZ] T(z) + Rtlz = O.

From this and T(O) = 0 it follows that

T(z) = H[R + (1 - C) tlZ] - (R2 - 2R(I + C) tlz + (1 - C)2 tl2Z2)l/2].
(3.12)

This shows that T(z) is not only a formal power series, but that it represents a
holomorphic function in a disk centered at the origin. The radius of the disk
is equal to the distance from the origin to the nearest singularity Zo , which
in this case is a branch point, i.e., the root of the equation

with smallest absolute value. Simple calculation yields (also for C = 1).

(3.13)

For given Rand E all sufficiently small values of C will make I Zo I > R - E.

Letting C have a such value we know that for any continued fraction in .rR,c
the corresponding series

dO

L (_I)n+1 Ynzn
n=l

(3.14)

has coefficients dominated by those of T(z) (see (3.10)), and hence, by a
trivial argument, the series (3.14) must also represent a holomorphic function
in I z I < R - E. Theorem 1 is thus proved as far as correspondence at 0 is
concerned. Before going over to correspondence at 00 we shall make two
observations, the first one of use in Section 5 for the extension of Theorem 1,
the second one of use in the convergence discussion in Section 6.

Observation 1. For any continued fraction in .rR,c the corresponding
series at the origin represents a holomorphic function in some neighborhood
of the origin. (At least in I z I < Rj[2(1 + Rl/2)2], as may be seen from (3.13).)

Observation 2. Let R > 1 and E E (0, R - 1) be given. Let furthermore
C be such that T(z) is holomorphic in I z I < R - E. Let finally r E (1, R - E).
For any continued fraction in ~,c the corresponding series L(z) at the
origin is hoiomorphic in Iz I < R - E and satisfies in I z I ~ r the following
inequality
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= i f C'cZ " II < f t"r" = T(r) - t1r
,"~2 I "~2
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R - (l + C) t1r + (R2 - 2R(l + C) t1r + (1 - C)2 t1
2r2)1/2 •

(3.15)

(It follows from (3.13) and r < I Zo I that R - (l + C) t1r > 0.)

4. CORRESPONDENCE AT 00

LEMMA 4. If the general T-fraction (3.1) corresponds to the pair (2.1) of
formal Laurent series, then the following set offormulas holds:

(4.1)

The proof is a straightforward computation, similar to the one in the proof
of Lemma 1, and shall be omitted here.

With};, and g" as in (3.4), the formulas for the first YIt'S are:

* 1 + fl
Yo = 1 - gl

* (1 + fl)(f2 + g2)
Y-l = (l gl)2(l - g2)

* _ (l + fl)(f2 + g2)2 + (l + fl)(1 + f2Kf.3 + g3)
Y-2 - (1 - gl)3(l g2)2 (1 - gl)2(1 - g2)2(1 - g3) .

LEMMA 5. Iff" > 0 and°< g" < 1 for all k ~ 1, then

for all N ~ 1.

Proof We first observe that under the conditions of the lemma all y;t"s
(n < 0) are positive. For n = 0, -1, - 2 this is readily seen from the
formulas above, and it follows generally by a simple induction argument.
(Of course all y~'s must also be positive.)



338 HAAKON WAADELAND

From the formulas above we see directly that the inequality holds for
N = 1 and N = 2. Assume that N is a natural number such that the
inequality holds for all Y':m with m ~ N. Since all y;i"s and ()it - 1) are
positive and -I/G1 > 1 we have from (4.1)

Hence the lemma is proved by induction.

PROPOSITION 2. For any C E (0, R) there is in ~,c a general T-fraction
whose corresponding series at 00 diverges for all z in I z I < 1/R.

Proof Take the general T-fraction with fie = gle = CfRIe for all k, and
let

n~O

L (_l)n+1 q;'zn (4.2)

be the corresponding Laurent series at 00. All q~ are positive, and from
Lemma 5 it follows that for all N ~ 1

For any z in I z I < I/R we have I q':NZ-N I > CfR, and hence (4.2) diverges
for such a z, and Proposition 2 is proved (with the same general T-fraction
as in Prop. 1).

Proposition 2 takes care of the "sharpness statement" in Theorem 1 for
correspondence at 00.

LEMMA 6. For any n ~ -1, y~ is a sum offractions, where the denominator
is a product offactors of the form 1 - g/, and the numerator is a product of
factors of the types (1 +f",) and U;, + gk)' Every term contains at least one
factor of the type (fk + gk)'

Proof From the formulas we see directly that the statement holds for
n = -1 and n = -2. Let N ~ - 2 be a number such that the statement
holds for n = -1, n = -2,... , n = N. Then it holds for the expressions

and
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and hence for yt-1 , according to formula (4.1). Lemma 6 is thus proved by
induction.

As in Lemma 3 we see that Lemma 6 implies the following:

(1) Ifh, > 0 and 0 < g70 < 1 for all natural numbers k, then all y; ,
n ~ 0, are positive. (Already known from proof of Lemma 5.)

(2) If /70 > 0 and 0 < g70 < 1 for all natural numbers k, then for all
n ~ 0, y* isa strictly increasing function orall/7o's and g7o'S in the formula
for y;. On the other hand, for fixed absolute values of all ftc and g7o,
I g7c [ < 1, the I y;t I's are maximal when h, ~ 0 and g70 ~ 0 for all k. This
implies in particular that in ~.c we generally have for all n ~ 0

where the q;'s are defined in (4.2).

(3) For all n ~ -1 we have

From the properties 1 and 3 it follows by usillg Lemma 4 that

* ~ 2CR * + 1
qn-1 ~ (R2 - C)(R - C) qn R - C n ~ O. (4.3)

Let <t;);:o be a sequence of positive numbers, defined by

* R -+ C * 2CR * 1 ~ * *
to = R _ C' tn - 1 = (R2 _ C)(R _ C) tn + R C k!.::+l tn _ 7ct7c , n:OS;; O.

Then it follows from property 2 and (4.3) that

for all n ~ O. (4.4)

We shall now study the formal series

n=O

T*(z) = L t:zn
.

We first rewrite the recursion formula for t;_1:

o
(R ~ C) t:_1 = Kt: + I t:_7ct:,

7c=n

where
K= 2RC R+ C

R2_C-R C'

n :os;; 0,

(4.5)
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For T*(z) we thus have the formal identity

(R - C) (T*(z) - ~ ~ ~) = Kr1T*(z) + r 1T*(z)2,

or in rewritten form

T*(Z)2 - [(R - C)z - K] T*(z) + (R + C)z = 0.

This shows that T*(z) represents the holomorphic function

T*(z) = H(R - C)z - K - ([(R - C)z - K]2 - 4(R + C)Z)1/2]
(4.6)

in a neighborhood of 00. (The choice of - follows from limz->oo T*(z) =
(R + C)/(R - C).)

We shall find the singularity 4 of largest absolute value. z; is the root of
largest absolute value in the equation

[(R - C)z - K]2 - 4(R + C)z = 0,

i.e.,

zri = (R ~ C)2[K(R - C) + 2(R + C) + 2(K(R2 - C2) + (R + C)2)1/2].

(4.7)

When C ~ 0, wehave that K ~ -1 and z; -?- liR. Hence, for any E > 0
there is a C > 0, such that for any continued fraction in !FR,c the corre
sponding series at 00 represents a holomorphic function in I z I > llR + E.

This completes the proof of Theorem 1.
As in Section 3 we shall make two observations for later use.

Observation 3. For any continued fraction in ~,c the corresponding
series at 00 represents a holomorphic function in some neighborhood of 00.

(This is easily seen from (4.6) and (4.7». But, contrary to the correspondence
at 0, there is here no fixed neighborhood of 00 that will do for all continued
fractions in

U !FC,R')
O<;C<R

Observation 4. Let R > 1 and E > °be given. Let furthermore C E (0, R)
be such that T*(z) is holomorphic in the domain Iz I > l/R + E (also at (0).
Then the same holds for any L*(z) corresponding at 00 to a continued
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fraction in .'TR,c. Let r > 0 be such that llr > llR + E. Then for any such
L*(z) the following holds in I z I ?o I/r:

I L *(z) + 1 I = Ic: + 1 + nI,l c:zn I
-00

n=-l
~ I 1 - y~ I + I t:r-n

-00

~ ~- + T* (1-) - t* = T* (~) - 1""'R-C r 0 r .

This gives

I L*(z) + 11 (4.8)

<: 4C/r + 2(1 + K)
"'" (R - C)/r - K - 2 + «(R - C)/r - K)2 4(R + C)/r)l/2 .

5. AN EXTENSION OF TBEOREM 1

In the remark after the definition of YR,c it is pointed out that any con
tinued fraction in ~,c has a corresponding pair (L(z), L*(z)) of formal
Laurent series (1.2). From the observations 1 and 3 we know that L(z)
represents a holomorphic function L in some neighborhood of the origin
and that L*(z) represents a holomorphic function L* in some neighborhood
of 00. We have furthermore that any "tail"

of a continued fraction in ~,c is a continued fraction in YR.C1RN-l and hence
has a corresponding pair (LN(z), Lt(z)) of formal Laurent series (1.2). To
any E E (0, R - 1) there is an N, such that LN(z) represents a holomorphic
function L N in I z I < R - E and that Lt(z) represents a holomorphic
function Lt in I z I > IIR + E. Between (L, L*) and (LN , Lt) we have the
obvious relations

and the same with *. Hence L has a meromorphic extension to I z I < R -E

and L* a meromorphic extension to I z I > IIR + E. Since E > 0 can be
taken arbitrarily small, we have the following result:



342 HAAKON WAADELAND

THEOREM 2. To any continued fraction in :Y.'I..c the corresponding pair
(L(z), L*(z)) of formal Laurent series represents a pair of functions (L, L*),
where L is holomorphic in some neighborhood of °and has a meromorphic
extension to I z I < R, and where L * isholomorphic in some neighborhood of 00

and has a meromorphic extension to I z I > liR.

6. CONVERGENCE

We shall need a result from [7], for our purposes rephrased as follows:

Given C1 =1= 0, and let rand p be any two positive numbers such that

(6.1)

Then there exist numbers ex > 0, [3 > 0, such that if (L(z), L *(z)) is a pair
(1.2) offormal Laurent series with that particular c1-value, then the following
holds:

If L(z) represents a holomorphic function L in [ z I < rand

in I z 1< r, (6.2)

and L*(z) represents aholomorphic function L* in I z I > P and

I L*(z) + 1 I ~ [3 in Izi > p, (6.3)

then a corresponding general T-fraction exists, is limit-periodic with
Fn ~ F =1= ° and Gn ~ -F as n ~ 00, and converges to L(z) locally
uniformly in I z 1< 111 F I and to L*(z) locally uniformly in I z I > 1/1 F I.

(In [7] is used a slightly different normalization on L, i.e., L(z) =

1 + c1z + "', and hence the boundedness conditions in [7] look differently:
IL(z) - 1 - c1z I = ex, IL*(z)1 = [3.)

Let R > 2. Then for all sufficiently small C E (0, R) we also have

2
R> 1 - C/R'

and there is an r, such that

2
R > r > 1 _ C/R' (6.4)

Furthermore, since llR < !, we have for all sufficiently small C E (0, R)
that

1 1
Ii. < 2(1 + CjR) ,
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and there is an r, such that

1 1 1
Ii. < -;; < 2(1 + C/R) .

343

(6.5)

We shall assume that C E (0, R) is small enough to ensure R > 2/(1 - C/R)
and l/R < 1/[2(1 + C/R)] at the same time, and that r is picked to satisfy
(6.4) and (6.5) simultaneously. Then obviously (6.4) and (6.5) hold for any
smaller value of C. Since for all continued fractions in !T..1?,C the first coefficient
C1 of L(z) must satisfy the inequality

C C
1 - R ~ i Cl I ~ 1 + R'

it follows that for any continued fraction in YR,c the inequalities (6.1) hold
with p = I/r.

When C -+ 0, the right-hand side of (3.15) and of (4.8) both tend to zero
(since C -+ °=> K -+ -1), and hence (6.2) and (6.3) are satisfied for all
sufficiently small C. Hence we have the following theorem on convergence
(since here F = 1):

THEOREM 3. Let R > 2. Then for all sufficiently small C any continued
fraction in ~,c will converge locally uniformly in I z I < 1 to L(z) and locally
uniformly in I z I > 1 to L*(z).

Remarks. An extreme example is the general T-fraction

z
1 - z

z z
l-z+l-z+ .. ··

(6.6)

This continued fraction is in any YR,c. It is easy to see that (6.6) corresponds
to

(L(z), L*(z)) = (z, -1),

and that it converges to z locally uniformly in I z I < 1 and to -1 locally
uniformly in I z I > 1. (The convergence properties as well as the corre
spondence properties are most easily established by calculating the explicit
expressions for the approximants.)

It is likely that the conclusion of Theorem 3 also holds for R-values less
that 2, but the method of [7] cannot provide any better value. Based upon
the results for ordinary T-fractions [1] there is reason to believe that the
conclusion holds for all R > 1.

In the paper [7] is briefly mentioned the possibility of accelerating the
convergence and increasing the domain of convergence in the limit-periodic
case by "modifying" the approximants. In the present case this means to
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study the sequence (Sn(z) in a neighborhood of the origin, and (Sn(-1) in a
neighborhood of 00, where

(Sn(O) is the sequence of ordinary continued fraction approximants.)
In an unpublished paper [6] on ordinary T~fractions it is proved (under
similar conditions as in the present paper), that the "O-modification" (i.e.,
replacing Sn(O) by Sn(z)) extends the convergence to L(z) from the unit disk
I z I < 1 to the disk I z I < R minus the poles, and uniformly on compact
subsets of that domain. It seems likely that this also will be the case for
general T-fractions in ffC •R and also that the" oo-modification" will provide
convergence to L*(z) in I z I > 1jR minus poles. Those questions and also
estimates of convergence acceleration will be discussed in a subse9-uent
paper.

7. FINAL REMARKS

As stated in the introduction the present paper originates from properties
of general T-fractions, corresponding to a pair (L(z), L*(z)) of Laurent
series satisfying certain boundedness conditions. This restricts the discussion
to general T-fractions, satisfying conditions of type (1.3). A discussion of
limit-periodic general T-fractions in general (where Flo -- F, Gk -- G) is
beyond the scope of the present paper. By using [8] in the discussion of
correspondence and [5, p. 93] in the discussion of convergence it is not hard,
however, to prove that such a T-fraction, under rather mild conditions on Flo
and Gk , will correspond to a pair (L(z), L *(z)) and converge to L(z) and L *(z)
in neighborhoods of 0 and 00.

For the theorems in the present paper, however, the property G = -F =1= 0
is essential, and so is the rate at which Flo -- F and Gk -- -F.
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